Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Front Genet ; 13: 942713, 2022.
Article in English | MEDLINE | ID: covidwho-2141773

ABSTRACT

Immunocompromised patients can experience prolonged SARS-CoV-2 infections in the setting of a lack of protectivity immunity despite vaccination. As circulating SARS-CoV-2 strains become more heterogeneous, concomitant infection with multiple SARS-CoV-2 variants has become an increasing concern. Immunocompromised patient populations represent potential reservoirs for the emergence of novel SARS-CoV-2 variants through mutagenic change or coinfection followed by recombinatory events. Identification of SARS-CoV-2 coinfections is challenging using traditional next generation sequencing pipelines; however, targeted genotyping approaches can facilitate detection. Here we describe five COVID-19 cases caused by coinfection with different SARS-CoV-2 variants (Delta/Omicron BA.1 and Omicron BA.1/BA.2) as identified by multiplex fragment analysis.

3.
Front Immunol ; 13: 1020165, 2022.
Article in English | MEDLINE | ID: covidwho-2114621

ABSTRACT

Background: Immunocompromised (IC) patients show diminished immune response to COVID-19 mRNA vaccines (Co-mV). To date, there is no 'empirical' evidence to link the perturbation of translation, a rate-limiting step for mRNA vaccine efficiency (VE), to the dampened response of Co-mV. Materials and methods: Impact of immunosuppressants (ISs), tacrolimus (T), mycophenolate (M), rapamycin/sirolimus (S), and their combinations on Pfizer Co-mV translation were determined by the Spike (Sp) protein expression following Co-mV transfection in HEK293 cells. In vivo impact of ISs on SARS-CoV-2 spike specific antigen (SpAg) and associated antibody levels (IgGSp) in serum were assessed in Balb/c mice after two doses (2D) of the Pfizer vaccine. Spike Ag and IgGSp levels were assessed in 259 IC patients and 50 healthy controls (HC) who received 2D of Pfizer or Moderna Co-mV as well as in 67 immunosuppressed solid organ transplant (SOT) patients and 843 non-transplanted (NT) subjects following three doses (3D) of Co-mV. Higher Co-mV concentrations and transient drug holidays were evaluated. Results: We observed significantly lower IgGSP response in IC patients (p<0.0001) compared to their matched controls in 2D and 3D Co-mV groups. IC patients on M or S showed a profound dampening of IgGSP response relative to those that were not on these drugs. M and S, when used individually or in combination, significantly attenuated the Co-mV-induced Sp expression, whereas T did not exert significant influence. Sirolimus combo pretreatment in vivo significantly attenuated the Co-mV induced IgMSp and IgGSp production, which correlated with a decreasing trend in the early levels (after day 1) of Co-mV induced Sp immunogen levels. Neither higher Co-mV concentrations (6µg) nor withholding S for 1-day could overcome the inhibition of Sp protein levels. Interestingly, 3-days S holiday or using T alone rescued Sp levels in vitro. Conclusions: This is the first study to demonstrate that ISs, sirolimus and mycophenolate inhibited Co-mV-induced Sp protein synthesis via translation repression. Selective use of tacrolimus or drug holiday of sirolimus can be a potential means to rescue translation-dependent Sp protein production. These findings lay a strong foundation for guiding future studies aimed at improving Co-mV responses in high-risk IC patients.


Subject(s)
COVID-19 Vaccines , COVID-19 , Mice , Animals , Humans , Tacrolimus/pharmacology , Tacrolimus/therapeutic use , HEK293 Cells , COVID-19/prevention & control , SARS-CoV-2 , Immunoglobulin G , Sirolimus/pharmacology , Sirolimus/therapeutic use
4.
Frontiers in genetics ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2058121

ABSTRACT

Immunocompromised patients can experience prolonged SARS-CoV-2 infections in the setting of a lack of protectivity immunity despite vaccination. As circulating SARS-CoV-2 strains become more heterogeneous, concomitant infection with multiple SARS-CoV-2 variants has become an increasing concern. Immunocompromised patient populations represent potential reservoirs for the emergence of novel SARS-CoV-2 variants through mutagenic change or coinfection followed by recombinatory events. Identification of SARS-CoV-2 coinfections is challenging using traditional next generation sequencing pipelines;however, targeted genotyping approaches can facilitate detection. Here we describe five COVID-19 cases caused by coinfection with different SARS-CoV-2 variants (Delta/Omicron BA.1 and Omicron BA.1/BA.2) as identified by multiplex fragment analysis.

5.
Clin Chem ; 68(8): 1042-1052, 2022 07 27.
Article in English | MEDLINE | ID: covidwho-1864962

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge, and effective tracking requires rapid return of results. Surveillance of variants is typically performed by whole genome sequencing (WGS), which can be financially prohibitive and requires specialized equipment and bioinformatic expertise. Genotyping approaches are rapid methods for monitoring SARS-CoV-2 variants but require continuous adaptation. Fragment analysis may represent an approach for improved SARS-CoV-2 variant detection. METHODS: A multiplex fragment analysis approach (CoVarScan) was validated using PCR targeting variants by size and fluorescent color. Eight SARS-CoV-2 mutational hot spots in variants of concern (VOCs) were targeted. Three primer pairs (recurrently deleted region [RDR] 1, RDR2, and RDR3-4) flank RDRs in the S-gene. Three allele-specific primers target recurrent spike receptor binding domain mutants. Lastly, 2 primer pairs target recurrent deletions or insertions in ORF1A and ORF8. Fragments were resolved and analyzed by capillary electrophoresis (ABI 3730XL), and mutational signatures were compared to WGS results. RESULTS: We validated CoVarScan using 3544 clinical respiratory specimens. The assay exhibited 96% sensitivity and 99% specificity compared to WGS. The limit of detection for the core targets (RDR1, RDR2, and ORF1A) was 5 copies/reaction. Variants were identified in 95% of samples with cycle threshold (CT) <30 and 75% of samples with a CT 34 to 35. Assay design was frozen April 2021, but all subsequent VOCs have been detected including Delta (n = 2820), Mu, (n = 6), Lambda (n = 6), and Omicron (n = 309). Genotyping results are available in as little as 4 h. CONCLUSIONS: Multiplex fragment analysis is adaptable and rapid and has similar accuracy to WGS to classify SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Mutation , Polymerase Chain Reaction/methods , RNA, Viral/analysis , SARS-CoV-2/genetics
6.
Front Immunol ; 12: 730404, 2021.
Article in English | MEDLINE | ID: covidwho-1459289

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus causes a spectrum of clinical manifestations, ranging from asymptomatic to mild, moderate, or severe illness with multi-organ failure and death. Using a new machine learning algorithm developed by us, we have reported a significantly higher number of predicted COVID-19 cases than the documented counts across the world. The sole reliance on confirmed symptomatic cases overlooking the symptomless COVID-19 infections and the dynamics of waning immunity may not provide 'true' spectrum of infection proportion, a key element for an effective planning and implementation of protection and prevention strategies. We and others have previously shown that strategic orthogonal testing and leveraging systematic data-driven modeling approach to account for asymptomatics and waning cases may situationally have a compelling role in informing efficient vaccination strategies beyond prevalence reporting. However, currently Centers for Disease Control and Prevention (CDC) does not recommend serological testing either before or after vaccination to assess immune status. Given the 27% occurrence of breakthrough infections in fully vaccinated (FV) group with many being asymptomatics and still a larger fraction of the general mass remaining unvaccinated, the relaxed mask mandate and distancing by CDC can drive resurgence. Thus, we believe it is a key time to focus on asymptomatics (no symptoms) and oligosymptomatics (so mild that the symptoms remain unrecognized) as they can be silent reservoirs to propagate the infection. This perspective thus highlights the need for proactive efforts to reevaluate the current variables/strategies in accounting for symptomless and waning fractions.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/physiology , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Asymptomatic Diseases , COVID-19/transmission , COVID-19 Serological Testing , Centers for Disease Control and Prevention, U.S. , Humans , Immunity , United States , Vaccination
9.
Vaccines (Basel) ; 9(7)2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1289046

ABSTRACT

BACKGROUND: Lung-transplant (LT) recipients are at high risk for COVID-19 due to immunosuppression and respiratory tropism of SARS-CoV-2. The information on the effect of COVID-19 mRNA vaccines to elicit immunogenic responses after a two-dose (2D) regimen in LT recipients is sparse. Thus, we assessed the effect of Pfizer-BioNTech and Moderna mRNA vaccines' 2D regimen on anti-spike responses in immunocompromised LT recipients. METHODS: We utilized serum samples from LT recipients vaccinated for SARS-CoV-2 with 2D of either the Pfizer-BioNTech or Moderna vaccines and 2D-vaccinated naïve (non-transplanted and non-exposed to COVID-19) group. Antibody responses were assessed using the FDA-approved SARS-CoV-2 anti-nucleocapsid protein IgG assay (IgGNC), the SARS-CoV-2 anti-spike protein IgM assay (IgMSP), and the SARS-CoV-2 anti-spike protein IgG II assay (IgGSP). CD4+ T-cell activity was assessed as a marker of immune competence using the ImmuKnow® assay. RESULTS: About 25% (18/73) of SARS-CoV-2 uninfected-LT patients generated a positive spike-IgG response following 2D of vaccines, with 36% (9/25) in the Moderna cohort and only 19% (9/48) in the Pfizer cohort. 2D in LT patients elicited a significantly lesser median IgGSP response (1.7 AU/mL, 95% CI: 0.6-7.5 AU/mL) compared to non-transplanted, uninfected naïve subjects (14,209 AU/mL, 95% CI: 11,261-18,836 AU/mL; p < 0.0001). In LT patients, the Moderna-evoked seropositivity trend was higher than Pfizer. CONCLUSION: 2D COVID-19 vaccination elicits a dampened serological response in LT patients. Whether assessing other arms of host immunity combined with a higher vaccine dose can better capture and elicit improved immunogenicity in this immunocompromised population warrants investigation.

10.
J Clin Microbiol ; 59(7): e0038821, 2021 06 18.
Article in English | MEDLINE | ID: covidwho-1276887

ABSTRACT

The coronavirus disease 19 (COVID-19) pandemic continues to impose a significant burden on global health infrastructure. While identification and containment of new cases remain important, laboratories must now pivot and consider an assessment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunity in the setting of the recent availability of multiple COVID-19 vaccines. Here, we have utilized the latest Abbott Alinity semiquantitative IgM and quantitative IgG spike protein (SP) serology assays (IgMSP and IgGSP) in combination with Abbott Alinity IgG nucleocapsid (NC) antibody test (IgGNC) to assess antibody responses in a cohort of 1,236 unique participants comprised of naive, SARS-CoV-2-infected, and vaccinated (including both naive and recovered) individuals. The IgMSP and IgGSP assays were highly specific (100%) with no cross-reactivity to archived samples collected prior to the emergence of SARS-CoV-2, including those from individuals with seasonal coronavirus infections. Clinical sensitivity was 96% after 15 days for both IgMSP and IgGSP assays individually. When considered together, the sensitivity was 100%. A combination of NC- and SP-specific serologic assays clearly differentiated naive, SARS-CoV-2-infected, and vaccine-related immune responses. Vaccination resulted in a significant increase in IgGSP and IgMSP values, with a major rise in IgGSP following the booster (second) dose in the naive group. In contrast, SARS-CoV-2-recovered individuals had several-fold higher IgGSP responses than naive following the primary dose, with a comparatively dampened response following the booster. This work illustrates the strong clinical performance of these new serological assays and their utility in evaluating and distinguishing serological responses to infection and vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19 Vaccines , Humans , Immunoglobulin G , Immunoglobulin M , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus
12.
Signal Transduct Target Ther ; 6(1): 105, 2021 03 02.
Article in English | MEDLINE | ID: covidwho-1114699
13.
Diagnostics (Basel) ; 10(12)2020 Nov 24.
Article in English | MEDLINE | ID: covidwho-945730

ABSTRACT

BACKGROUND: Patients with hematological malignancies (HM), including multiple myeloma (MM), frequently suffer from immune deficiency-associated infectious complications because of both the disease and the treatment. Alarming results from China and the UK confirm the vulnerability of HM patients to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-driven coronavirus disease 2019 (COVID-19). Given that the immunoassay interference from the endogenous monoclonal immunoglobulin (M paraprotein) and treatment antibodies continually challenges the MM management, it is critical to evaluate the SARS-CoV-2 serology tests for suspected interference/cross-reactivity. METHODS: We compared the degree of interference in three SARS-CoV-2 serology assay platforms in HM patients with and without COVID-19 and on various therapeutic monoclonal antibody (t-mAb) treatments. Further, we confirmed the cross-reactivity in pooled samples from normal and COVID-19 + samples spiked with respective antibodies in vitro. RESULTS: None of the 93 HM patient samples with or without t-MAbs showed cross-reactivity on any of the three serology platforms tested. CONCLUSIONS: The tested three serologic assays for SARS-CoV-2 are specific and do not have cross-reactivity with M-components or t-MAbs indicating that they can be used safely in oncology practice and in research exploring the immunologic response to COVID-19 in patients with HM.

16.
Am J Clin Pathol ; 154(4): 459-465, 2020 09 08.
Article in English | MEDLINE | ID: covidwho-646825

ABSTRACT

OBJECTIVES: Initial reports indicate adequate performance of some serology-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) assays. However, additional studies are required to facilitate interpretation of results, including how antibody levels impact immunity and disease course. METHODS: A total of 967 subjects were tested for IgG antibodies reactive to SARS-CoV-2, including 172 suspected cases of SARS-CoV-2, 656 plasma samples from healthy donors, 49 sera from patients with rheumatic disease, and 90 specimens from individuals positive for polymerase chain reaction (PCR)-based respiratory viral panel. A subgroup of SARS-CoV-2 PCR-positive cases was tested for IgM antibodies by proteome array method. RESULTS: All specificity and cross-reactivity specimens were negative for SARS-CoV-2 IgG antibodies (0/795, 0%). Positive agreement of IgG with PCR was 83% of samples confirmed to be more than 14 days from symptom onset, with less than 100% sensitivity attributable to a case with severe immunosuppression. Virus-specific IgM was positive in a higher proportion of cases less than 3 days from symptom onset. No association was observed between mild and severe disease course with respect to IgG and IgM levels. CONCLUSIONS: The studied SARS-CoV-2 IgG assay had 100% specificity and no adverse cross-reactivity. Measures of IgG and IgM antibodies did not predict disease severity in our patient population.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Immunoglobulin G/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Severity of Illness Index , Antibody Formation , Biomarkers/blood , COVID-19 , COVID-19 Testing , Case-Control Studies , Coronavirus Infections/blood , Cross Reactions , Cross-Sectional Studies , Humans , Immunoglobulin M/blood , Pandemics , Pneumonia, Viral/blood , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL